DISEASES FOUND IN MANURE: A SOLUTION PROPOSAL FOR REDUCTION

SYLVIA CAPARROTTA & ANIKA MABANO

Background

- Efficient use of animal manure can significantly reduce greenhouse gas emissions [1].
- Animal manure contains a lot of harmful pathogens, including Providencia spp. [2], E. Coli [3], and Salmonella spp.
- We aim to reduce some of these pathogens by genetically modifying [4] animals for increased pathogenic resistance.

Results

sgRNA (highest CRISPRscan score)			Locus (loc
GTGAGCCGTGGCGTCCGGCGGGG			5:374319
TGGACGGCGGCGATCCAGGGGGG			5:490869
GAAAGGAGT	GATGTCCTCG ⁻	TAGG	27:12745
CGTCGTGGC	GGTGGCCGCA	ACGG	2:843500
GAAGGCAGG	AGCCGACCCA	AAGG	5:272341
sgRNA			Locus (loc
GCAGCAGTC	TTCAGCGTCG	TTGG	8:760547
GTGAGTGCG	CCCAGCGACC	GGGG	28:45022
AGCTTTGGG	ACCGCCGCCG	GTGG	21:27086
GGCCGTCATGCGCTGCGTGGGGGG 13:1			13:17485
CTC ATTATTT	CACCCCTAT	ACC	11:46493
	GTGAGCCGTC TGGACGGCG GAAAGGAGT CGTCGTGGCC GAAGGCAGG SgRNA GCAGCAGTC GTGAGTGCG AGCTTTGGG	GTGAGCCGTGGCGTCCGGC TGGACGGCGGCGATCCAGG GAAAGGAGTGATGTCCTCG CGTCGTGGCGGTGGCCGCCA GAAGGCAGGAGCCGACCCA SgRNA GCAGCAGTCTTCAGCGTCG GTGAGTGCGCCCAGCGACC AGCTTTGGGACCGCCGCCG	GTGAGCCGTGGCGTCCGGCGGGG TGGACGGCGGCGATCCAGGGGGG GAAAGGAGTGATGTCCTCGTAGG CGTCGTGGCGGTGGCCGCAACGG GAAGGCAGGAGCCGACCCAAAGG sgRNA GCAGCAGTCTTCAGCGTCGTTGG GTGAGTGCGCCCAGCGACCGGGG AGCTTTGGGACCGCCGCCGGTGG

Methods

We identified 5 genes in the chicken genome [5] and cow genome [6] with potential immunological properties. We used CRISPR scan [7]---a program designed by Yale University---to identify sgRNA sequences [8], which can be used for gene editing. We used the sequence with the highest CRISPRscan score which determines the sgRNA

sequence with the highest efficiency.

	_{}	
\prec		
	١	

▲ 1	CRISPRscan score ▼ 2	Locus	Target sequence
	59	11:46493661-46493684 (-)	GTCATTATTTGGACCGGTATAG
	30	11:46488009-46488032 (+)	CGTCGTTCAGGATGCATTCCTG
	29	11:46487975-46487998 (-)	AGTATAATTCGAGATATGTCAG
	26	11:46486086-46486109 (-)	AGACGAACCCGTCTTGCTAAAGG
	20	11:46488048-46488071 (+)	AGTTGTATTTCACGTTACTCTG
	82	11:46482972-46482995 (-)	TGGGGTGCCATTGCCTTCTCCG
	80	11:46489679-46489702 (-)	GTGGTGATGGTGGCAGCCAGTGG
	79	11:46482972-46482994 (-)	GGGGTGCCATTGCCTTCTCCGG
	66	11:46483176-46483199 (+)	GCCTGGTGGGCTGCCGTCTATG
	61	11:46489678-46489701 (-)	TGGTGATGGTGGCAGCCAGTGGG

Acknowledgements

• Our amazing mentor, Laura Sofie Vinter!

cation)

- 924-37431947 (+) 9-490892 (+)
- 554-1274577 (+)
- 067-84350090 (-)
- 138-27234161 (-)

cation)

- 763-76054786 (+) 2553-45022576 (+) 6808-27086831 (-) 5934-17485957 (+) 3661-46493684 (-)

Conclusion

- SgRNA sequences can be edited using CRISPR-Cas9 technology (or in a lab) to genetically modify an organism
- More genes with immunological properties (such as cytokines) should be sequenced
- CRISPR scan is not 100% accurate [9]
- No lab, limited time and technology
- These edits need to be tested to ensure accuracy of the genetic modification and to confirm there aren't any side effects

Wrap-Up

The components of animal manure: nutrients, organic matter, solids, energy, and fiber can be utilized for products such as fertilizer and biofuels [1]. Harmful pathogens get in the way of this, but those harmful pathogens may be mitigated with genetic modification.

SOURCES

[1] Beneficial Uses of Manure and Environmental Protection, www.epa.gov/sites/default/files/2015-08/documents/beneficial_uses_of_manure_final_aug2015_1.pdf. Accessed 20 Apr. 2024.

[2] Guan, Jiayao, et al. "Genetic Characterization of Four Groups of Chromosome-Borne Accessory Genetic Elements Carrying Drug Resistance Genes in Providencia." Infection and Drug Resistance, U.S. National Library of Medicine, 27 Apr. 2022, www.ncbi.nlm.nih.gov/pmc/articles/PMC9058013/.
[3] Black, Zoe, et al. "The Fate of Foodborne Pathogens in Manure Treated Soil." *Frontiers in Microbiology*, U.S. National Library of Medicine, 10 Dec. 2021, www.ncbi.nlm.nih.gov/pmc/articles/PMC9058013/.

[4] Tait-Burkard, Christine, et al. "Livestock 2.0 – Genome Editing for Fitter, Healthier, and More Productive Farmed Animals - Genome Biology." *BioMed Central*, BioMed Central, 26 Nov. 2018, genomebiology.biomedcentral.com/articles/10.1186/s13059-018-1583-1.

[5] Gul, Haji, et al. "Genetic Resilience in Chickens against Bacterial, Viral and Protozoal Pathogens." *Frontiers in Veterinary Science*, U.S. National Library of Medicine, 10 Nov. 2022, www.ncbi.nlm.nih.gov/pmc/articles/PMC9691405/#:~:text=The%20natural%20resistance%2Dassociated%20macrophage, resistance%20and%20susceptibility%20of%20chic ken.

[6] Mamber, Stephen W, et al. "Low-Dose Oral Interferon Modulates Expression of Inflammatory and Autoimmune Genes in Cattle." *Veterinary Immunology and Immunopathology*, U.S. National Library of Medicine, Apr. 2016, www.ncbi.nlm.nih.gov/pmc/articles/PMC7173013/.
 [7] CRISPRscan: Designing highly efficient sgRNAs for CRISPR/Cas9 targeting in vivo

Miguel A. Moreno-Mateos*, Charles E. Vejnar*, Jean-Denis Beaudoin, Juan P. Fernandez, Emily K. Mis, Mustafa K. Khokha and Antonio J. Giraldez *Equal contribution

Nature Methods 2015

doi:10.1038/nmeth.3543

PMID:26322839

[8] "Full Stack Genome Engineering." Synthego, www.synthego.com/guide/how-to-use-crispr/sgrna. Accessed 20 Apr. 2024.
 [9] "What Is CRISPR?" The Jackson Laboratory, www.jax.org/personalized-medicine/precision-medicine-and-you/what-is-crispr#:~:text=not%20100%25%20efficient%2C%20so%20even,consequences%2C%20particularly%20in%20clinical%20applications. Accessed 20 Apr. 2024.